Discussion on

“Nested nonparametric processes”

by Federico Camerlenghi

Antonio Canale - canale@stat.unipd.it - @tonycanale_
O’Bayes 2022, University of California Santa Cruz, Sept 9, 2022

UNIVERSITA
DEGLI STUDI
DI PADOVA




Brief summary (1)

m Federico reviewed the degeneracy property of the nDP presented in Camerlenghi
etal (2019, BA), i.e. two random probability measures are either identical or share
no common atoms

m Tosolve the above issue the large class of latent nested processes (LNP) is
introduced

m In Dentietal (2022,]JASA), instead, the common atom model (CAM) is
introduced:
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Brief summary (2)

m CAM does not suffer from the degeneracy property and allows a two-layer
clustering
m Distributional clustering: G; are clustered to the G,
m Observational clustering y; ; are clustered in the atoms 0.
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m In this case the distributional clustering are
grouping the individuals




1) Possible CAM generalizations

m Inthe CAM all the sequences of weights have a DP-like construction, i.e.

Wh:VhH(1—Vg), VhNBeta(La)
l<h

m Natural extensions include general stick-breaking priors, e.g. the Pitman-Yor
process
T = V) H(1 - ), vp~Beta(1-0,a+ho)
l<h
this would allow more flexible distributional clustering behaviour.

m In D’Angelo etal. (2022, Biometrics) we defined a mixture of finite mixture
(MFM) version of the CAM also employing the computational strategies of
Frithwirth-Schnatter, et al. (2021, BA)
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2) Testing group differences

m The CAM is reminiscent of the shared kernel (SK) screening approach by Lock and
Dunson (2015, Biometrika) and Canale and Dunson (2017, Stat. Sinica).

m Consider data belonging to two groups (e.g. cases and controls) and assume to
measure some outcome y;; ~ f; for group1andy; o ~ fo for group O with interest
on

Ho:fo =1 Hi:fo#f

m Assume a SK mixture model for both cases and controls, e.g.

fu(-) = zg:ﬂ'é,h’(('; 6r)
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2) Testing group differences

The CAM is reminiscent of the shared kernel (SK) screening approach by Lock and
Dunson (2015, Biometrika) and Canale and Dunson (2017, Stat. Sinica).

Consider data belonging to two groups (e.g. cases and controls) and assume to
measure some outcome y;; ~ f; for group1andy; o ~ fo for group O with interest
on

Ho:fo =1 Hi:fo#f

Assume a SK mixture model for both cases and controls, e.g.
fu(-) = ZWMK('; 6r)
¢

The hypotheses is equivalent to
Ho : g0 = Ty foreach £ Hy @ g # gy forsomed

Can we consider this a special case of CAM mixture? Can we use CAM mixtures for
testing group differences?
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3) Really nonparametric?

m |n mixture models, assuming a finite or infinite (nonparametric) mixing measure
makes a conceptual difference

m Assume the simple setting
y,'|PNP? PZZWL,(SQE
h>1

m |n both cases, for a finite sample (i = 1, dots, n) data cluster into k, < n clusters

m In finite mixtures y,,; can be assigned in a new cluster but up to a prespecified
upper bound.

m |n CAM, however,

Q=) e, Gy =) whlp:
I>1

h>1

is an infinite sum. Does it really make sense to assume an infinite mixture for the
groups?
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Questions/comments

Generalizations to other type of weights construction. Can we play similar game
for classical BNP mixtures? Any special case that makes particularly sense in the
CAM settings? Any problem in doing so (e.g. harder computations?)

Similarities with the SK approach. Is the SK approach a special case of CAM
mixture? Can we use CAM mixtures for testing group differences?

Do we really need to assume an infinite mixture forQ = 3., m,éc;?
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